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Abstract—Rich thread-level parallelism of GPU has motivated co-running GPU kernels on a single GPU. However, when GPU kernels
co-run, it is possible that one kernel can leverage buffer overflow to attack another kernel running on the same GPU. There is very limited
work aiming to detect buffer overflow for GPU. Existing work has either large performance overhead or limited capability in detecting
buffer overflow. In this article, we introduce GMODX, a runtime software system that can detect GPU buffer overflow. GMODXx performs
always-on monitoring on allocated memory based on a canary-based design. First, for the fine-grained memory management, GMODXx
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introduces a set of byte arrays to store buffer information for overflow detection. Techniques, such as lock-free accesses to the byte
arrays, delayed memory free, efficient memory reallocation, and garbage collection for the byte arrays, are proposed to achieve high
performance. Second, for the coarse-grained memory management, GMODXx utilizes unified memory to delegate the always-on
monitoring to the CPU. To reduce performance overhead, we propose several techniques, including customized list data structure

and specific optimizations against the unified memory. For micro-benchmarking, our experiments show that GMODXx is capable of
detecting buffer overflow for the fine-grained memory management without performance loss, and that it incurs small runtime overhead
(4.2 percent on average and up to 9.7 percent) for the coarse-grained memory management. For real workloads, we deploy GMODx
on the TensorFlow framework; it only causes 0.8 percent overhead on average (up to 1.8 percent).

Index Terms—Buffer overflows, CUDA, GPGPU, unified memory

1 INTRODUCTION

RAPHICS processing units (GPUs) are widely adopted in

HPC and cloud computing platforms to accelerate
general-purpose workloads. For example, GPUs can achieve
significant speedup for graph processing applications [1],
and GPU-assisted network traffic processing in software
routers outperforms the multicore-based counterparts [2].
In addition, GPUs can also be used to accelerate big-data
processing [3], [4], [5], [6], and assist operating systems [7],
[8]1, [9], [10], [11], [12] as a buffer cache. Rich thread-level
parallelism in GPU has motivated co-running GPU kernels
on a single GPU. Computation-intensive algorithms, such
as AES [13], mathematical modelling [14], and biological
applications [15], have also been successfully ported to GPU
platforms. However, co-running GPU kernels poses a big
challenge on how to guarantee strong isolation between dif-
ferent kernels, when those kernels are used together with-
out any protection. It is possible that a kernel can leverage
buffer overflow to attack another kernel running on the
same GPU [16], [17].

Despite extensive research over the past few decades,
buffer overflow remains one of the top software vulnerabil-
ities. Many notorious attacks, such as Code Red [18], Morris
Worm [19], and Slammer [20], exploit buffer overflow and
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result in program crash, data corruption, and security
breaches. Those attacks overwrite memory buffer allocated
by applications at runtime on CPU. The buffer overflow
also exists on GPU as introduced in recent studies [16], [17].
These studies demonstrate that buffer overflow on GPU
can lead to remote GPU code execution when dynamically
allocated memory is operated improperly.

However, detecting buffer overflow on GPU is non-
trivival due to the execution model and architecture of
GPU. First, a GPU kernel easily has a large number of
threads, each of which can dynamically allocate memory
buffers. Hence a GPU kernel can potentially have a large
number of memory buffers. Given these buffers, we must
have a systematic and scalable approach to collecting buffer
information for overflow detection. The approach should
minimize the usage of GPU resources, such as hardware
threads, so that GPU resources can be effectively used for
the computation of regular GPU kernels. Second, GPU lacks
certain system support available on CPU, such as page pro-
tection and preemptive execution. Traditional security
mechanisms, such as Electric Fence [21] and StackGuard [22]
based on system support on CPU, cannot work for GPU.
Third, detecting buffer overflow at runtime must have
minimum impact on the performance of GPU kernels. We
should avoid adding extra functionality into GPU kernels
for detecting buffer overflow. In addition, given that GPU
kernels and overflow detection kernel execute concurrently,
we should avoid data races between them, without
frequently interrupting the kernels execution.

Unfortunately, there is very limited work [23], [24], [25]
aiming to detect buffer overflow for GPU. The existing work
has either large performance overhead or limited protection.
For instance, cuda-memcheck [23] can identify the source
and cause of memory access errors in GPU code based on
intensive instrumentation. However, cuda-memcheck is for
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off-line memory checking. If used online, it has high runtime
overhead (about 120 percent [26]), which makes it impracti-
cal to be deployed in production. Another work clAR-
MOR [24] is an overflow detector based on canary (a
technique embedding information into the buffer for over-
flow detection). c|/ARMOR has several limitations. First, the
detection of overflow is performed only after the kernel has
completed, which opens a door for adversaries to perform
attacks during kernel execution, or even makes it possible to
restore the buffer content to avoid detection. Second, clAR-
MOR does not work for dynamically allocated memory (.e.,
the memory allocated using malloc). Hence, clARMOR
provides limited protection for memory buffers on GPU.

In this paper, we introduce GMODx, a runtime software
system that supports the following features to detect GPU
buffer overflow for co-runing kernels. High efficiency:
GMODx incurs low runtime overhead and consumes little
GPU resource, and is hence practical to be deployed in a pro-
duction environment. Better detection: GMODx performs
always-on monitoring on GPU memory buffers. It can detect
buffer overflow that happens at either the beginning or end
of user buffers. High transparency: GMODXx only requires pro-
grammers to make little change to the application, or even no
modifications if the target program only uses the coarse-
grained memory management. It does not demand special
system support from compilers, device driver, or hardware.

GMODx is based on canary and utilizes secret keys and
buffer address to generate respective canaries for each buffer
for high security. For the fine-grained memory management
(using malloc to allocate memory on GPU), to avoid perfor-
mance overhead, GMODXx introduces a set of byte arrays to
store buffer information for overflow detection. The byte
array-based design works for user kernels with massive
number of user threads, because the byte array stores buffer
information continuously in memory for better data locality,
and avoid dereferencing memory pointer. Several accompa-
nying techniques are also devised to reduce performance
overhead, such as lock-free accesses to the byte arrays,
delayed memory deallocation, and efficient memory reallo-
cation and garbage collection for the byte arrays. For the
coarse-grained memory management (using cudaMalloc
to allocate memory), to mitigate GPU resource consumption,
GMODx employs unified memory to delegate the always-on
monitoring to the CPU. Due to low concurrency ( memory
allocation is performed on CPU), a custom list structure is
used to store buffer addresses for high performance. Further-
more, the runtime is encapsulated within a dynamic shared
library that interposes the memory allocation APIs, making
it possible to offer protections transparently without any
changes to applications.

Our main contributions are summarized as follows:

e We present a dynamic GPU memory overflow detec-
tor based on canaries. To the best of our knowledge,
this is the first tool that can perform on-line overflow
detection for both fine-grained and coarse-grained
memory allocation on GPU. We make GMODx open
source [27], [28].

e We propose effective approaches to enabling low
performance overhead and resource consumption
for buffer overflow detection.
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e We extensively evaluate GMODx using representa-
tive benchmarks. The results show that GMODx
does not have performance overhead for the fine-
grained memory allocation, and incurs rather a small
runtime overhead for the coarse-grained memory
allocation. We also deploy GMODx on the Tensor-
Flow framework, it only causes 0.8 percent overhead
on average (up to 1.8 percent). Therefore, we believe
it can be used as a practical solution to be deployed
in production.

This paper significantly extends an earlier conference
version [25] in the following ways. First, we present an in-
depth analysis on the potential overflow of coarse-grained
memory management (Section 3), by discussing concurrent
kernel execution between different GPU streams, CPU
threads, and even processes. Second, we add a full new
Section 6 to present the approach which is specifically
designed to detect buffer overflow for the coarse-grained
memory management. For high performance, it introduces
a custom list data structure and optimizations for unified
memory. Third, a comprehensive performance evaluation
on the coarse-grained memory allocation in Section 8 is con-
ducted, which shows that GMODx incurs small runtime
overhead.

2 BACKGROUND

In this section, we present an overview of GPGPU memory
management and the unified memory.

2.1 GPGPU Memory Management

GPU device memory is separated from the host memory on
CPU. GPU device memory is traditionally managed with
runtime APIs like cudaMalloc and cudaFree (called the
coarse-grained memory management). Buffers dynamically
allocated with these APIs are explicitly transferred to GPU,
and cannot be freed during kernel execution. Modern GPU
also supports dynamic memory management using malloc
and free (called the fine-grained memory management),
similar to the traditional counterparts on CPU.

In addition, using coarse-grained memory allocation
before launching kernels is usually performant than fine-
grained memory allocation during the execution of kernels,
because the underlying system has more optimizations for
contiguous and large memory management on GPU. There-
fore, it is more common to use coarse-grained memory man-
agement in GPU applications [29], [30], [31], [32].

2.2 Unified Memory

The unified memory is a component of the CUDA program-
ming model, first introduced in CUDA 6.0, which defines a
managed memory space in which all processors see a single
coherent memory image with a common address space. In
other word, the unified memory bridges the host and device
memory space so that the memory is accessible from both
the CPU and GPU in the system. A program can allocate
managed memory either via the function cudaMallocMan-
age that is semantically similar to cudaMalloc, or by defin-
ing a global variable with the keyword __managed__. With
the unified memory, we can monitor the GPU memory usage
from CPU. However, this may cause large overhead. The
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unified memory is implemented by automatically migrating
memory pages between the host and device. Concurrent
read and write accesses from both sides would cause fre-
quent page migrations, resulting in great performance loss.
In this paper, we propose optimizations for the unified mem-
ory to address this issue.

3 MOTIVATION

Buffer overflow is a type of software error that can lead to
program crash, data corruption, and security breaches. A
buffer overflow occurs when a program overruns the buf-
fer’s boundary and overwrites adjacent memory. Recently,
two independent works [16], [17] demonstrate that over-
writing GPU memory can be exploited to conduct code
injection attacks. In addition, our experiments show that the
coarse-grained memory allocation is also subject to buffer
overflow. We explore the overflow vulnerabilities of cuda-
Malloc under different scenarios in the following.

3.1 Concurrent Kernels From Different Streams

In order to demonstrate the bufer overflow, we first conduct
an experiment in which a program launches two concurrent
kernels in different streams. This experiment represents a
typical usage case of sharing a single GPU among multiple
mutually-untrusted users. The experimental environment is
almost the same as in [17] except that we allocate memory
using the coarse-grained APIs. A malicious kernel tries to
corrupt a benign kernel to trigger an attacking function in
the malicious kernel. The results show that it is possible to
mount an attack by overwriting the memory allocated by
cudaMalloc because the allocated buffers for different ker-
nels are contiguous, which can be leveraged by the malicious
kernel to conduct the attack.

3.2 Concurrent Kernels From Different CPU Threads
In this section, we show it is also possible to induce over-
flows among concurrent kernels that are launched from dif-
ferent CPU threads. The configuration is similar to the
previous one. In particular, allocated buffers are not adjacent
to each other because they are from different CPU threads.
Our experiment shows that the malicious kernel can still cor-
rupt the buffer allocated with cudaMalloc in the benign
kernel. The reason is that the whole heap memory space on
GPU (managed using APIs like cudaMalloc) is not isolated
across distinct CPU threads, and overflowing buffer can still
work even though the buffers are not contiguous.

3.3 Concurrent Kernels From Different CPU
Processes

The process abstraction provided by the operating system
should provide strong isolation. However, in this experi-
ment, we present a case in which a malicious kernel from
one process can leverage the aforementioned vulnerability
to attack another concurrently running kernel from a differ-
ent process. We use multi-process service (MPS) to achieve
concurrent execution of two processes.

In this experiment, we can also observe that buffers in the
benign kernel can be overwritten. However, compared with
the previous two cases, there are three limitations to conduct
the attack in this case. First, the malicious process needs to
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overflow more content of the target buffer and the success
probability is much lower than the other two cases, because
the buffers allocated by different processes exhibit more ran-
domness under MPS. In other words, it is difficult to sabotage
the benign process because the malicious process is hard to
locate the memory addresses allocated by the benign process.
Although overflowing more data can increase the probability
of a success attack, it may result in segmentation faults on
GPU. Second, the malicious process must be running when
the benign process is calling the malicious function, because
if the malicious process has exited, the system will recycle the
resources associated with the malicious function. Third, the
attack cannot work on Volta architecture GPU because each
process on Volta MPS has its own GPU address space instead
of sharing the GPU address space with all other processes
(previous two cases still work on Volta GPU).

3.4 Overflow in Other Memory Management
Functions

There are other device memory management functions that
may be subject to overflow vulnerability. According to our
experiments, the malicious kernel can also corrupt the
memory allocated by cudaMallocHost, cudaMalloc-
Pitch and cudaMalloc3D. However, buffers allocated
with cudaMalloc3DArray, cudaMallocArray, and cud
aMallocMipmappedArray are safe under overflows,
because they are used to bind read-only texture memory
and cannot be accessed directly from the kernel. In the fol-
lowing, we focus on the discussion of cudaMalloc, and
the techniques proposed are also applicable to other APIs
that are subject to the overflow attack.

3.5 Summary

In general, buffer overflow happens with both the fine-grained
and coarse-grained memory management. For the coarse-
grained case, our experiments show that the possibility of suc-
cessfully mounting an attack in first two scenarios (Sections 3.1
and 3.2) are almost 100 percent, and with MPS, we observe a
probability about 40 percent (8 successes in 20 attempts) to cor-
rupt the benign process. In addition, the overflow issue also
exists with other device memory management functions.
Therefore, we urgently need an overflow detector that is easy
to deploy and provides high security and performance guaran-
tees for GPU. Existing countermeasures against buffer over-
flow deployed on CPU include bounds checking [33], [34],
canary checking [22], non-executable memory [35], randomiza-
tion [36], and so on. In this work, we focus on canary checking,
a lightweight approach, whose effectiveness has been demon-
strated with the wide deployment and success of Stack-
Guard [22] and its derivation ProPolice [37]. Canaries are
known values that are placed outside of a buffer to assist buffer
overflow detection. Once there is a buffer overflow, the canary
would be corrupted, and a failed verification of the canary
value is therefore an alert of an overflow.

4 SyYSTEM OVERVIEW

This section presents an overview of GMODx which pro-
vides always-on monitoring on both the fine-grained and
coarse-grained memory allocation. Fig. 1 generally depicts
GMODx.
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Fig. 1. Architectural overview of GMODXx.

4.1 Fine-Grained Memory Detection

GMODx has three main components to detect buffer over-
flow for fine-grained dynamic memory allocation: (1) cus-
tomized memory allocation and free functions called by the
user kernel, (2) byte arrays to store buffer information, and
(3) a guard kernel (Fig. 1).

The guard kernel is a GPU service that resides on GPU.
Given an application with many user kernels to protect, the
guard kernel is launched at the start of the application and
detects overflow for any user kernel of the application. The
guard kernel is launched and explicitly terminated by CPU.
The guard kernel is very lightweight and uses a small amount
of threads to avoid performance impact on the user kernels.

GMODx has a set of byte arrays on GPU global memory.
The byte array is a data structure that saves the information
of user buffers. The guard kernel examines the byte arrays to
detect buffer overflow. Each byte array is associated with a
thread in the guard kernel (i.e., a guard thread) for the exami-
nation. The information of user buffers allocated in a user
thread is stored in a specific byte array. The association
between the user thread and byte array is based on the user
thread ID. Many user threads can be associated with the
same byte array (and hence the same guard thread). The
above design of guard thread and byte array is featured with
using limited hardware resource (i.e., GPU threads) to detect
buffer overflow for the massive number of user threads.

GMODx has two customized memory management func-
tions, mallocN and freeN. These two functions extend the
original functionalities of malloc and free to collect neces-
sary information for overflow detection and garbage collec-
tion. These two functions are called by the user kernel.
mallocN allocates a memory space (i.e., a user buffer) and
then places canaries at two ends of the user buffer to detect
overflow. User threads concurrently calling mallocN can
concurrently insert buffer information into the byte arrays
based on a lock-free design for high performance. The buffer
information is used by the guard threads to detect buffer
overflow. freeN flags the user buffer as free, but does not
really deallocate memory. Instead, the guard kernel per-
forms actual memory reclamation. Such method of delayed
memory deallocation improves the performance of the user
kernel and simplifies the design of the guard kernel.

To detect buffer overflow, the guard threads repeatedly
scan the set of byte arrays. In each scan, the guard threads
first perform memory reallocation and garbage collection to

Fine-grained memory

manage memory space usage for the byte arrays, when the
free space of the byte arrays is not enough. After that, the
guard threads get buffer information from the byte arrays,
and locate canaries to detect buffer overflow. If no overflow
is found and the current buffer has been marked as free by
the user kernel, GMODXx releases the buffer and flags corre-
sponding buffer information as expired to avoid future scan.
Fig. 2 generally depicts the overflow detection algorithm.
We describe details in the following sections.

4.2 Coarse-Grained Memory Detection

GMODx has three main components for the coarse-grained
memory allocation: (1) the customized memory allocation/
deallocation functions called by GPU programs, (2) the uni-
fied memory component that bridges the CPU and GPU,
and (3) the CPU monitor thread.

The monitor thread is the same as the guard thread
except it is executed on CPU and just launch one thread for
detection. Due to the fact that we delegate the monitor
thread to CPU, the detection for coarse-grained memory is
lightweight and consumes no GPU resources. GMODx
redefines and intercepts two host memory allocation func-
tions, i.e., cudaMalloc and cudaFree (other host memory
allocation interfaces such as cudaMallocHost, cudaMal-
locPitch and cudaMalloc3D are processed similarly). It
is implemented as a dynamic shared library to interpose on
these functions, therefore, it can be deployed to protect

<
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Alter buffer
information

[ End
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Fig. 2. Algorithm overview of GMODXx.
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existing executables without recompilation and complex
binary instrumentation. Two customized memory alloca-
tion functions extend the original functionalities to collect
necessary information for overflow detection. The inter-
cepted cudaMalloc allocates unified memory space (i.e., a
user buffer) using cudaMallocManaged and places canar-
ies at both ends of the user buffer for overflow detection.
Then, it inserts the buffer address as a node to the list struc-
ture. The new cudaFree also employs delayed memory
deallocation to reduces overhead and simplifies the design
of the monitor thread. In addition, because the concurrency
degree of coarse-grained memory allocation is low as com-
pared to fine-grained memory allocation, we leverage the
list structure instead of the byte array to store buffer infor-
mation which removes atomicCAS and garbage collection
and has a positive impact on performance.

5 FINE-GRAINED MEMORY DETECTION

5.1 Guard Kernel

The guard kernel must be lightweight, and also be able to
manage a large number of user threads. In our design, the
guard kernel has just one thread block, and runs in parallel
with the user kernel by CUDA stream. A user thread is asso-
ciated with a guard thread in charge of detecting buffer
overflow for the user thread. Associating a user thread with
a guard thread is based on the global thread ID of the user
thread. The global thread ID is calculated based on the user
kernel configuration, i.e., the number of threads in a thread
block (blockDim), the user thread ID (threadldx) and user
thread’s block ID (blockIdx). For example, for a user kernel
with one-dimensional thread blocks, the global thread ID
for a user thread is global_tid = threadldz.x + blockDim.x
blockIdx.x. Assuming there are m guard threads, then the
user thread with a global thread ID (global_tid) is assigned
to a guard thread whose ID is global_tid mod m. In general,
we assign user threads to guard threads in a cyclic manner.
We do not assign user threads in a block manner, because
we want to avoid load imbalance between guard threads. In
particular, we notice that some thread blocks of a user ker-
nel can have much more dynamic memory allocation than
other thread blocks. Using the block manner, some guard
threads may have to detect buffer overflow for many more
user buffers than other guard threads, which introduces
load imbalance.

The number of guard threads in GMODx has an impact
on overflow detection latency and user kernel performance.
The overflow detection latency is defined as the elapsed
time from the occurrence of buffer overflow to detection.
Given a fixed number of user buffers to protect, a larger
number of guard threads results in a smaller number of buf-
fers per guard thread, which reduces the detection latency.
However, a larger number of guard threads can negatively
impact the performance of user kernel, due to competition
on hardware resources (e.g., caches and global memory).
Such tradeoff between detection latency and performance
exists in any buffer overflow detection algorithm. We study
such tradeoff in Section 8.3 using various number of guard
threads, and empirically choose 32 as the number of guard
threads for GMODx. Using 32 guard threads can effectively
detect overflow and has no performance overhead.
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Fig. 3. Buffer structure of the fine-grained memory.

5.2 Buffer Structure for Fine-Grained Memory

The fine-grained memory buffer protected by GMODx
should be allocated with the GMODx'’s customized memory
allocation function. The user buffer includes not only mem-
ory space for user data, but also buffer information (particu-
larly, canary and buffer size). Fig. 3 depicts the buffer
structure allocated by the customized memory allocation
function.

In particular, the user buffer is surrounded with two
words called head canary and tail canary. In this way, a buffer
overflow is detected when the tail or head canary is cor-
rupted. There is a size field after the head canary. This field
is used to locate the tail canary based on the buffer starting
address. The size field is encrypted by XORing the buffer
size and a secret key. The head canary is the encryption
results of a secret key (named as the head secret key), the
buffer size and buffer starting address. The tail canary is
built in the same way as the head canary except using a tail
secret key. All the keys are fully random numbers.

GMODx encrypts the size field to effectively prevent
attackers from obtaining the overall structure of buffer. If
the decrypted size field is not consistent with the size value
in the head canary, a buffer overflow is detected. Further-
more, each canary is unique, because it is generated based
on the buffer address. Thus, even if the canary of a buffer is
leaked, it is difficult to forge another buffer’s canary without
knowing size and address of the buffer.

5.3 Byte Array

The byte array is designed to store buffer information,
including buffer addresses and whether buffers are released.
We use array instead of dynamic data structures (e.g., linked
list) to store the buffer information to enable good data local-
ity. In particular, the byte array is preallocated by the guard
thread, before the allocation of any user buffer. Once a user
buffer is allocated, its buffer information is sequentially fed
into a byte array. Hence, a guard thread can access the buffer
information of many user buffers with good spatial locality.
Using a dynamic data structure, such as linked list, can easily
cause random memory access with bad data locality. Fur-
thermore, a guard thread can scan a byte array without any
pointer dereferencing, while using a dynamic data structure,
the guard thread usually has to do so. Because dereferencing
pointers is more expensive than using index of a byte array
to access array elements on GPU, using byte array improves
performance. However, using a preallocated byte array loses
the flexibility of a dynamic data structure. We need to
dynamically grow or shrink the byte array, when it runs out
of array space or has too much useless buffer information.
We discuss our mechanism to dynamically manage byte
array space in Section 5.6.

Each guard thread is in charge of one byte array and
repeatedly read the array to get buffer information. A byte
array collects the buffer information for a specific number
of user threads. Assuming that the total number of threads
from user kernels is M and the total number of guard
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Fig. 4. An illustration example for a byte array.

threads is IV, then each byte array collects the buffer infor-
mation for M /N user threads.

The structure of a byte array is as follows (see Fig. 4). A
byte array contains buffer information for a number of user
buffers (see “buffer info” in Fig. 4). Each buffer information
consists of a buffer address (8 bytes) and a header (1 byte).
The header is used to indicate if the user buffer is expired or
not. A user buffer is expired, if the buffer is released by a
guard thread (not user thread). If a user buffer is expired,
the guard kernel skips its information for overflow detec-
tion. The header can also be used to avoid a read-after-write
hazard (see Section 5.5 for details).

5.4 Memory Allocation and Free
We extend CUDA'’s original dynamic memory management
functions malloc and free. To make the discussion easy,
we usemallocN and freeN to represent our version.
mallocN allocates memory using the original malloc
function. Furthermore, mallocN expands the allocated mem-
ory space to accommodate extra information for the user
buffer. Such information includes canaries and buffer size
(see Section 5.2). After the memory space allocation, mallocN
insert buffer addresses into the byte array and set the corre-
sponding header field as 1. mallocN introduces more opera-
tions than regular malloc. However, those operations are
lightweight and have ignorable performance impact on the
user kernel execution time, as shown in Section 8.

freeN uses a two-step algorithm to free memory. In the
first step, the head canary of the user buffer is updated with
a new value (called free canary). The free canary is the
encryption result of the old head canary with a secrete key.
The free canary can be used to detect the double free prob-
lem (see Section 5.8 for details). freeN returns without
actually releasing the memory.

The second step happens after freeN returns. In particu-
lar, when a guard thread examines the buffer to detect over-
flow and finds that a buffer has a free canary, the guard
thread releases the buffer after performing canary verifica-
tion. The guard thread also resets the header field to 0
(expired buffer) in the corresponding byte array to avoid
using the information of the freed user buffer in subsequent
execution.

We use the above two-step algorithm, because it simpli-
fies our design for memory deallocation and improves per-
formance. In particular, using guard threads to release user
buffer removes overhead of releasing buffer from the user
threads, hence improving performance. If we ask user
threads to release memory, then user threads must intro-
duce a mechanism (e.g., a hash table) to efficiently locate
user buffer information in byte arrays and update it. Such
mechanism complicates our design while introducing extra
overhead into critical path of the user kernel.

The two-step algorithm has a drawback: memory deallo-
cation is delayed. However, the delay is short and no longer
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1 __device__ void insertBuffInfo(uint64_t address)
2 {

3 int32_t old_idx, tmp_idx;
4+ int8_tx old_ptr;
5 int8_t header=1;
6 /+ Insert into byte array with lock—free operation =/
7 do {

8 old_idx = byte_array—>idx;

9 old_ptr = byte_array—>ptr;

10 tmp_idx = old_idx + 9;
1} while ((old_idx) != atomicCAS(&byte_array—>idx,
12 old_idx, tmp_idx));

13 memcpy(old_ptr + old_idx + 1, &address, 8);
14 /% Guarantee finishing insertion of buffer

15 information before decompressing it =/
16 memcpy(old_ptr + old_idx, &header, 1);
17 }

Fig. 5. A code snippet that inserts buffer information into a byte array. As
a data structure, the byte array has two extra fields to facilitate insertion:
the field idx that points to the first free byte in the byte array, and the field
ptr that points to the beginning of the byte array.

than the time of scanning a byte array for once by a guard
thread. Since the time of scanning a byte array for once is
very short (typically much shorter than the kernel execution
time), the freed memory can be timely released.

5.5 Lock-Free Insertion

We describe how inserting buffer information in byte arrays
happens in details in this section. Fig. 5 generally explains
the algorithm with a code snippet. The algorithm is featured
with a lock-free design to handle potential data races on the
byte array.

The algorithm locates a position within a byte array to
insert header and address. The major challenge to do so is
to coordinate concurrent requests for inserting multiple
user buffer information from multiple user threads. The
algorithm uses a lock-free design (Lines 7-12) based on
atomicCAS which is a hardware-based atomic operation.
In particular, each user thread tries to atomically update the
byte array without relying on explicit locking to coordinate
concurrent updates to the byte array.

After the position to insert the header and address is
located, the algorithm inserts the header and address into the
byte array by memcpy (Lines 13-16). Note that we do not use
locking to coordinate concurrent updates from multiple user
threads, because the position where the header and address
will be inserted has been secured in Lines 7-12. We also do not
use locking to coordinate between the guard thread that will
read the buffer information and the user thread that is updat-
ing the byte array. Instead, we control the order of adding the
header and address to avoid using locking. In particular, we
add the address first and then the header. Without setting up
the header first, the guard thread is not able to read the new
buffer information, hence we avoid potential data races
between the user thread and guard thread.

5.6 Garbage Collection and Memory Reallocation

Using byte arrays, we must dynamically manage memory
space. In particular, we must dynamically expand capacity
of the byte arrays to accommodate information of new user
buffers, and reclaim memory space of those useless buffer
information (i.e., garbage collection) in byte arrays. We
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introduce a memory space management mechanism
with minimized performance impact on user threads. We
describe our dynamic memory management as follows.

A byte array initially has s (s=20 KB) to accommodate
buffer information for 2,000 user buffers. When the byte
array has only x% free space (x=20 in our implementation),
the guard thread doubles the size of the byte array (.e.,
memory reallocation) and performs garbage collection.
Such memory management does not wait for the drain of
the byte array. Instead, memory management is proactive,
and always provides sufficient space in the byte array to
accommodate new buffer information. In addition, because
of the SIMD nature of GPU, 32 threads run concurrently on
a GPU multiprocessor. This indicates that 32 guard threads
can concurrently perform garbage collection and memory
reallocation on 32 byte-arrays. Such concurrency in memory
management reduces memory management overhead.

We evaluate our choice of s (20 KB) and x (20) with stress
testing with intensive memory allocation (see Section 8.2).
Our evaluation shows that our choice of s and x does not
block user threads for memory management in the byte
array, and hence always provide sufficient space.

To reclaim memory space for garbage collection, we do
not recycle those elements of the byte array that have use-
less buffer information, because this method requires the
user threads to examine which element of the byte array has
useless buffer information and hence introduces excessive
overhead into the user threads. Instead, our method aggre-
gates the valid buffer information into a new byte array
without garbage, for garbage collection.

We use the code snippet in Fig. 6 to further explain gar-
bage collection. Before garbage collection, each guard
thread allocates a new byte array (new_barray) that dou-
bles the memory size of the old byte array. The byte array
after garbage collection will be in new_barray. The byte
array before garbage collection is saved in an array
0ld_barray (Line 13); Garbage collection happens in a loop
(Lines 16-35). In the loop, the guard thread reads user buffer
information from old_barray, checks if each user buffer is
freed or not (Lines 23), and copies the valid buffer informa-
tion from old_barray to the new one (Lines 31-33).

To coordinate concurrent accesses to the byte array from
the user kernel (inserting addresses) and guard kernel
(moving valid addresses from the old byte array to the new
one), we introduce a lock-free design, shown as two loops
in Lines 25-29 in Fig. 6 and Lines 7-12 in Fig. 5. The two
lock-free while loops cooperate to guarantee the correct-
ness of concurrent insertions and garbage collection.

We use the lock-free loop in Fig. 5 to discuss a case with
data race and explain the effectiveness of the lock-free design.
In this case, replacing byt e_array with new_barray by the
guard thread (Line 14 of Fig. 6) competes with reading
byte_array (Line 8 in Fig. 5) by the user thread, creating a
read-after-write hazard. Assume that a user thread already
obtains the index (Lines 8 in Fig. 5) before garbage collection
happens. Afterwards, garbage collection happens and the
byte array is updated. The old index is not valid any more.
However, we have no problem for program correctness in
this case, because of the following reason. When the user
thread runs to Line 11 in Fig. 5, the old buffer index obtained
by the user thread will not be equal to the new buffer index

1167

1 __device__ byteArray+* new_barray[GUARD_THREADS];
2 __device__ byteArray* old_barray[GUARD_THREADS];
3 __device__ void garbageCollection()

4 {

5 int tid = threadIdx.x+ blockDim.x * blockIdx.x;
6 new_barray[tid] = new byteArray();

7 new_barray[tid] —>prt = allocateMemory();

8 new_barray[tid] —>idx = 0;

9 __syncthreads(Q);

11 /* The variable byte_array is a pointer of

12 the type byteArray accessed by each guard thread =/
13 old_barray[tid] = byte_array;

14 byte_array = new_barray[tid];

16 for (int32_t i =0; i < old_barray[tid]—>idx;) {
17 int8_t header = 0;

18 /* Get the header */

19 memcpy (&header, old_barray[tid]—>ptr + i, 1);
20 /% Increase the increment i =/

21 i+=9;

23 if (header !=0) {

24 int32_t old_idx, tmp_idx;

25 do {

26 old_idx = byte_array—>idx;

27 tmp_idx = old_idx + 9;

28 } while ((old_idx) !'= atomicCAS(&byte_array—>idx,
29 old_idx, tmp_idx));
30 /* Copy the content of old_barray to byte_array =/
31 memcpy (byte_array—>ptr + old_idx + 1,

32 old_barray[tid]—>ptr +i — 8, 8);

33 memcpy (byte_array—>ptr + old_idx, &header, 1);

34 }

35 }

3 __syncthreads(Q);

37 ... /% Free the old byte array =/

38 }

Fig. 6. A code snippet for garbage collection.

(i.e., the return value of atomicCAS). The user thread will try
to get the buffer index again, which ensures that the user
thread always obtains the most recently updated buffer index
toinsert the address.

We use the lock-free loop in Fig. 5 to discuss another case
with data race to explain the effectiveness of the lock-free
design. In this case, replacing byte_array with new_bar-
ray by the guard thread (Line 14 of Fig. 6) competes with
using memcpy (Lines 13-16 in Fig. 5) to write the header and
address into the byte array by the user thread, creating a
write-after-read hazard. Assume that a user thread already
obtains an index of the old byte array for inserting new buffer
information (Lines 11 and 12 in Fig. 5). Afterwards, garbage
collection happens and the byte array is updated. In this case,
the user thread inserts the new buffer information into the
new byte array but uses the index of the old byte array. How-
ever, we still have no problem in this case, because of the fol-
lowing reason. Line 9 in Fig. 5 stores a pointer of the old byte
array and subsequent memcpy uses it to insert the new buffer
information, which ensures correct insertion of the new
buffer information into the old byte array. Although the new
buffer information is inserted into the old byte array, the sub-
sequent garbage collection copies the new buffer information
from the old byte array to the new byte array, hence the new
buffer information can still be correctly placed into the new
byte array.
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5.7 Detection of Buffer Overflow
The guard kernel is responsible for overflow detection. To
do so, the guard thread first reads the header within a buffer
information in a byte array. If the header indicates that the
buffer has expired, the guard thread moves on to the next
buffer information and ignores the analysis on the current
buffer. Otherwise, the guard thread uses the address field
in the buffer information to obtain user buffer address.

After obtaining the user buffer address, it is straightfor-
ward to conduct overflow detection. If the buffer has been
freed in freeN, the guard thread releases this buffer after
verifying the canaries, and sets the header field to 0 (expired).
Otherwise (the buffer is still in use), the guard thread per-
forms canary verification to detect potential overflows. We
explain the canary verification in details as follows.

When a buffer is allocated, the head and tail canaries are
constructed. The head canary is constructed as follows.

head canary = size @& buffer address @ head secret key.
(1)

The tail canary is constructed in the same way, except
that it uses a different secret key. For the canary verification,
the guard thread first decrypts the size field embedded in
the front of the user buffer, and then recalculates the canar-
ies based on the buffer address, buffer size and secret keys.
The guard thread then compares the recalculated canary
with the canaries in the user buffer for canary verification. If
the canaries or the size field are corrupted, the verification
fails, indicating the occurrence of buffer overflow.

5.8 Detection of Double Free

Different from the detection of overflow by the guard
threads, detecting double free is conducted in freeN by the
user threads. The basic idea of detecting double free is to
introduce a canary, named free canary. The user thread
replaces the head canary with the free canary to indicate that
the buffer is freed.

Note that we ask the user thread (not the guard thread)
to replace the head canary and detect double free, because it
is the user thread that initiates the operations of buffer free-
ing. The guard thread cannot easily know whether a free
operation happens, after the buffer is already marked as
free by the user kernel. More details on the detection of dou-
ble free are as follows.

When a buffer is freed, the user thread first decides if the
head canary of the buffer is equal to the calculated free
canary based on Equation (2). If yes, the buffer has been freed
and the head canary has been replaced with free canary,
which indicates that double free is detected. If no (.e., the
head canary is not equal to free canary based on
Equation (2)), then we replace the head canary with free
canary based on Equation (3). The reason why we use Equa-
tion (3) (not Equation (2)) here is as follows:

free canary = @)

size @ address @ head secret key @ free secret key

free canary = head canary @ free secret key.

3)
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Simply speaking, using Equation (3) enables detection of
buffer overflow during the detection of double free. If the
head canary is corrupted, then using Equation (3), the cor-
ruption in the head canary will be carried by the free canary
and detected by the guard thread later on. Using
Equation (2), the corruption in the head canary will not be
carried by the free canary and cannot be detected by the
guard thread. Note that if the head canary is not corrupted,
Equations (2) and (3) are mathematically the same (given
Equation (1)), hence using Equation (3) does not negatively
impact the detection of double free.

6 COARSE-GRAINED MEMORY DETECTION

6.1 Monitor Thread
The monitor thread is similar to the guard thread except it is
executed on CPU and just launches one thread to detect.
Once the monitor thread is launched, it performs always-on
monitoring on allocated buffers until the user program exits.
When the user program calls cudaMalloc to allocate
buffer memory at the first time, the monitor thread is cre-
ated on CPU. As same as guard thread, the monitor thread
repeatedly scans the list structure. When the user program
terminates, the exit function that is registered with atexit
is automatically called to stop the monitor thread. Then the
monitor thread scans the list structure twice before termina-
tion. The reason is as follows. If the monitor thread immedi-
ately exits once it receives the signal, the overflow cannot be
detected if the buffer address is stored in the first half of the
list, while the monitor is scanning the second half of the list.

6.2 List Structure

The list structure (Fig. 7) is used to store memory addresses
for GPU kernels. The buffer addresses are inserted when
calling cudaMalloc. The node is the basic unit of the list
structure, and stores the buffer address and a pointer that
points to the next node. The list structure uses a never-
removed dummy node that stores nothing as the head
node, and we design customized insertion and deletion to
eliminate data race when insertions from the user program
and deletions from the monitor thread happen at the same
time. This custom list structure avoids specific designs for
synchronization (e.g., lock and atomicCAS), which has a
positive impact on performance. We describe the operations
of the list in the following.

For insertion, new nodes are always inserted between the
dummy node and the first user node (the node linked imme-
diately after the dummy node). For example, node C is
inserted between the dummy node and node A in Fig. 7 (1)
(2). When the user buffer is released by the monitor thread
(not the user program), the corresponding node becomes
invalid, and the monitor thread sets the expired buffer
address with an invalid flag. In the next scan, the monitor
thread will skip this invalid node and considers to delete it.
To delete an invalid node, if the invalid node is the first user
node (the node A in Fig. 7 (1)), it will not be removed even if
it is marked with the invalid flag. After a new node is
inserted (the node C in Fig. 7 (2)), the monitor thread will
delete it (Fig. 7 (3)). For other invalid nodes (such as the node
B in Fig. 7), the monitor thread deletes them immediately. In
this way, the new node insertion always happens between
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Fig. 7. List structure. From (1) to (2), node C is inserted into the list; and
from (2) to (3), node A is deleted from the list only if node A is not the
next node of the dummy node.

the dummy node and the last inserted node, so we can elimi-
nate the data hazard between node insertion and deletion.
The correctness is guaranteed when insertions and deletions
happen at the same time, otherwise, specific synchronization
mechanisms such as locks are needed to avoid data race in
these cases. In addition, this list structure is easy to extend to
fit multiple CPU threads, by configuring one list structure
per CPU thread (in most cases, one CPU thread and one list
structure is enough).

6.3 Unified Memory Optimization
In this section, we first study the potential performance
issue when employing unified memory in GMODYX, then we
demonstrate how to address this issue.

The functionality of unified memory is based on auto-
matic memory paging between the host and device. It can
cause large overhead when the data migration between the
two sides dominates the kernel execution time. We explore
the reason that frequent memory paging may happen in the
detector. For the unified memory, a 4 KB memory page [38]
is the basic unit of memory migration between the host and
device. Although the monitor thread on CPU just needs to
access the metadata (i.e., canaries and buffer size) that is
used to detect buffer overflow, the whole 4 KB memory
space including part of the user buffer will be migrated to
the host. Another memory transfer is required once the user
kernel begins to use the buffer. Certain memory access pat-
terns may result in excessive page migrations. Fig. 8 (1)
shows memory spaces (gray spaces) that both the CPU and
GPU need to access.

To solve this problem, we align the memory to 4 KB
boundary (Fig. 8 (2)). Therefore, the head canary with the
buffer size is migrated to the host without transferring the
real content of GPU applications, and the tail canary is con-
structed in the same way. In addition, the canaries and
buffer size are mostly read by the monitor thread, therefore,
we can use the cudaMemAdvise API (indicating the unified
memory subsystem about the memory access pattern) to
mark them with the cudaMemAdviseSetReadMostly
flag to further optimize performance. This flag indicates
that the data is mostly-read and only occasionally written
to. Prefetching can also be used to improve performance
using the cudaMemPrefetchAsync API that can migrate
data to GPU and insert corresponding entries in GPU page
table before the kernel begins accessing the data. Data pre-
fetching is to avoid page faults while also establishing data
locality.
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Fig. 8. Buffer structure. (1) a customized buffer structure of fine-grained
memory. (2) a customized buffer structure of coarse-grained which is
aligned to 4 KB boundary.

6.4 Memory Allocation and Deallocation

We extend CUDA'’s original memory management func-
tions cudaMalloc and cudaFree. The new cudaMalloc
involves two main operations. One is that we use cudaMal-
locManaged to allocate unified memory. The other is that
extra memory space is reserved to accommodate metadata
for the user buffer, including canaries and buffer size (see
Section 6.3). After allocating memory space, the new cuda-
Malloc inserts the buffer address into the list structure. Our
extended cudaMalloc introduces more operations than the
original one. However, its performance impact on the user
kernel is negligible because these operations are lightweight.
Our new cudaFree also uses a two-step algorithm to deallo-
cate memory.

6.5 Hooking cudaMalloc and cudaFree

In this section, we present how to implement GMODx as a
dynamic shared library. To this end, we need to hook and
extend related functions. However, there are two problems.
First, the runtime functions such as cudaMalloc and
cudaFree cannot be hooked (new versions of CUDA pre-
vent the runtime functions from being hooked). Therefore,
we intercept the underlying driver APIs such as cuMemAl-
loc and cuMemFree, which are used by the runtime func-
tions to allocate and release memory. Second, using the
function dlopen to get the address of driver functions can
bypass hooking, so we need to redefine dlsym to replace
the original one. Other functions (such as cudaMalloc-
Pitch, cudaMalloc3D and so on) are intercepted and
extended in the same way. Details are as follows.

Fig. 9 (Lines 13-24) shows how cuMemAlloc and cuMem-
Free are hooked. The customized cuMemAlloc «calls
alloc_wrapper to allocate unified memory that is filled
with extra information (canaries and buffer size) for overflow
detection. The customized cuMemFree first stores the original
pointer of cuMemFree that will be used to release the buffer
later. Then, it calls free_wrapper to perform delayed free.
In addition, Line 21 in Fig. 9 calls cudaDeviceSynchronize
to avoid prematurely releasing the buffer. If there is no such
synchronization to ensure that kernels have finished before
the delayed free, the user kernel may access the memory that
has been released by the monitor thread. To redefine d1sym
function, we first leverage __1ibc_dlsym to get the original
dlsym function (Lines 1-11 in Fig. 9), and then define its cus-
tomized version (Lines 26-34 in Fig. 9) to replace the original
one. Therefore, when one tries to use dlsym to get the func-
tion pointer of cuMemAlloc and cuMemFree, the redefined
dlsym will return our customized cuMemAl loc and cuMem-
Free, otherwise, it returns the original d1sym.

Because of packaging GMODx as a shared library, the
deployment becomes flexible. By setting the LD_PRELOAD
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extern "C" {
voidx __libc_dlsym(void *map, const char xname);

}

if (linternal_dlsym) {
void+ handle = dlopen("libdl.so.2", RTLD_LAZY);

1

2

3

4

5 static void* real_dlsym(void xhandle, const char symbol) {

6

7

8 internal_dlsym = (fnDlsym)__libc_dlsym(handle, "dlsym");
9

}
10 return (xinternal_dlsym) (handle, symbol);
1 3
12
13 extern "C" {
14 CUresult CUDAAPI cuMemAlloc(CUdeviceptr *p, size_t s) {
15 return alloc_wrapper(p, s);
16 }
17 CUresult CUDAAPI cuMemFree(CUdeviceptr p) {
18 if (lreal_cuMemFree) {
19 ...//get original cuMemFree function by real_dlsym
20 }
21 cudaDeviceSynchronize();
2 return free_wrapper(p);
23 }
24 3
25
26  void« dlsym(void rhandle, const char xsymbol) {
27 if (strcmp(symbol, "cuMemFree") == 0) {
28 return (voidx) (cuMemFree);
29 }
30 else if (strcmp(symbol, "cuMemAlloc™) == 0) {
31 return (voidx) (cuMemAlloc);
32 3
33 return (real_dlsym(handle, symbol));
a

Fig. 9. The code snippet of hooking cudaMalloc and cudaFree.

environment variable to the path of the shared library,
GMODx can be invoked to protect the memory allocated
with coarse-grained APIs without extra modifications.

7 DISCUSSION

Detection With Coarse-Grained Memory Management on CPU.
Compared with our previous work [25], GMODx immi-
grates the coarse-grained memory detection from GPU to
CPU. This design mitigates GPU resource consumption that
would be beneficial to the performance of user GPU appli-
cations. More importantly, the CPU-based detection mecha-
nism does not introduce any device code, so it can be
implemented as a shared dynamic library [43] and is trans-
parent to user applications. Meanwhile, most GPU applica-
tions and real workloads only employ the coarse-grained
memory management (detailed in Section 2.1). As a result,
for these real applications, it is easy to deploy overflow
detection without source code modifications.

8 [EVALUATION

8.1 Experimental Setup

Our experiments were performed on a system with a
2.4 GHz Intel Xeon CPU E5-2630, and an NVIDIA GeForce
GTX 1070 discrete GPU. The system runs ubuntu 16.04.4 LTS
with NVIDIA graphics driver version 384.11 and CUDA run-
time 9.0 installed.

We use five benchmarks (three normal benchmarks and
two micro-benchmarks) to evaluate the fine-grained memory
detection and 10 benchmarks to evaluate coarse-grained
memory detection (five benchmarks with cudaMalloc,
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TABLE 1
Benchmarks for Evaluating GMODXx

Benchmark Num.ker  Sum.Allocation
alloc-dealloc (ad) [39] 1 20K
alloc-cycle-dealloc (acd) [39] 5 100K
grid-point (gp) [40] 1 20K
add-string (ads) [40] 3 60K
random-graph (rg) [40] 1 60K
bfs [29] 3 14
mri-fhd [29] 4 11
pns [29] 2 3
mri-q [29] 4 9
fft [29] 44 3
simplePitchLinearTexture [41] 200 2
mummergpu [30] 14 9
_bilateral [30] 151 3
concurrentKernels [41] 9 2
mri-gridding [29] 43 22
TensorFlow [42] 360K 1.1K

Num ker is the number of user kernels for evaluation. Sum.Allocation is the
total number of memory allocations in a GPU program. For fine-grained mem-
ory allocation, Sum.Allocation is related to the number of user threads in a
benchmark, so we report the maximum number of memory allocations in our
evaluation.

three benchmarks with cudaMallocPitch, and two bench-
marks with cudaMallocHost). In particular, we focus on
evaluating cudaMalloc and cudaFree, because they are
widely used in GPU applications. At last, we deploy
GMODx with the TensorFlow [42] framework to evaluate its
performance impact on real and complex workloads. In
addition, There is no applications using cudaMalloc3D in
normal benchmark suites (Parboil [29], Rodinia [30],
SHOC [31], NUPAR [32] and CUDA SDK [41]). However,
cudaMallocPitch calls the same driver API (cuMemAl-
locPitch) as cudaMalloc3D, so we believe its evaluation
results are also relevant to cudaMalloc3D.

The benchmarks are summarized in Table 1. These
benchmarks use the default kernel configurations, unless
indicated otherwise. The benchmarks alloc-dealloc, alloc-
cycle-dealloc, add-string, random-graph, grid-point, sim-
plePitchLinearTexture, mummergpu, _bilateral, concurent-
Kernel and mri-gridding are called ad, acd, ads, rg, gp
simPit, mum, bil, conKer and mri-g for short in this section.
Among 15 benchmarks, ad, acd, ads, rg, and gp have fine-
grained memory management, and other 10 benchmarks
have coarse-grained memory allocations (benchmark bfs,
mri-thd, pns, mri-q, and fft allocate memory with cuda-
Malloc, benchmarks simPit, mum, and bil allocate memory
with cudaMallocPitch, and benchmarks conKer and
mri-g allocate memory with cudaMallocHost). For Ten-
sorFlow, we use data augmentation offered in the Tensor-
Flow benchmark [44] (the batch size is 32) to train typical
models ResNet-50 [45], Inception-v3 [46], VGG-16 [47], and
AlexNet [48]. We employ ImageNet as the training data set
for all models. ImageNet is a large image dataset with mil-
lions of images belonging to thousands of categories. All
results reported in this section are the average of 20 runs.

The reasons why we use these benchmarks are as fol-
lows. We use the two micro-benchmarks [39], because they
have very intensive memory allocations, which allows us to
evaluate the performance of GMODx with stress testing.
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Fig. 10. Performance results for two stress tests (preliminary performance
study). The number within parenthesis is the number of guard threads.

We use the three benchmarks (gp, ads, and rg) from Hal-
loc [40], because they support fine-grained memory alloca-
tion on GPU which cannot be found in the common GPU
benchmark suites, such as Parboil [29], Rodinia [30],
SHOC [31] and NUPAR [32]. Benchmarks bfs, mri-fthd, pns,
mri-q, and fft from Parboil [29] are representative programs
using coarse-grained memory allocation, and they are com-
plicated enough. In addition, their performance is sensitive
to the disturbance from any co-running benchmarks. Bench-
marks simPit, mum, and bil use cudaMallocPitch to allo-
cate memory and benchmarks conKer and mri-g use
cudaMallocHost to allocate memory.

8.2 Performance of Fine-Grained Memory Detection
As a preliminary performance study, we use two micro-
benchmarks (alloc-dealloc and alloc-cycle-dealloc) that have
very intensive memory allocations to evaluate overflow
detection on fine-grained memory allocations under stress
testing. Figs. 10a and 10b depict the results.

Using GMODY, instead of performance loss, we see per-
formance improvement, comparing to the cases without
GMODx. For example, with 32 and 64 guard threads for
alloc-dealloc, we have 55.4 and 58.4 percent performance
improvement, respectively; With 32 and 64 of guard
threads for alloc-cycle-dealloc, we have 33.8 and 32.8 percent
performance improvement, respectively. The performance
improvement comes from the asynchronous design of
freeN that delegates memory deallocation to the guard
kernel.

Fig. 10a reveals that increasing the number of guard
threads leads to better performance (shorter execution time)
in alloc-dealloc, although in many cases there is no big per-
formance difference between different cases. Having more
guard threads can result in better performance, because
GMODx has more resources (e.g., byte arrays and guard
threads) to detect buffer overflow. More byte arrays also
indicate less competition between user threads when con-
current updates to byte arrays happen. However, Fig. 10b
reveals that increasing the number of guard threads leads to
worse performance in alloc-cycle-dealloc. We attribute this
to resource contention on memory (bandwidth and cache)
between user threads and guard threads. A larger number
of guard threads cause more resource contention, hence
causing performance loss. We further discuss the effect of
the number of guard threads in the next section.

8.3 Sensitivity of Fine-Grained Memory Detection

In this section, we study how sensitive the detection latency
and user kernel performance are with regard to the number
of guard threads.
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Fig. 11. Average execution time of a guard thread scanning its byte array
for once.

Detection Latency. Similar to other tools detecting buffer
overflow on CPU [49], [50], [51], GMODx does not provide
real-time detection. To study the detection latency, we use
three benchmarks. For each benchmark, we use different
numbers of guard threads to run GMODx. Fig. 11 shows the
detection latency which is the average execution time of a
guard thread to scan its byte array for once. The reason why
we use such estimated detection latency is as follows.

The guard thread repeatedly scans the byte array. Any
buffer overflow should be detected by the guard thread in
one of those scans. In addition, the execution time of a
guard thread scanning the byte array for once depends on
the length of the byte array. Since the length of the byte
array is dynamically changed at runtime, we use the aver-
age execution time as a statistical quantification on the
detection latency. This approach has been commonly used
in existing work [51], [52].

Fig. 11 shows that the detection latencies in almost all
cases (22 out of 24 cases) are less than the execution time
of user kernels, which demonstrates that our detection
latency is short enough in most cases. In only two cases
(grid-point and random-graph when the number of guard
threads is 32) we can observe that the detection latency is
longer than the execution time of user kernel. However, by
increasing the number of guard threads (larger than 32),
we can make the detection latency shorter than the dura-
tion of user kernel.

Note that although GMODx cannot detect overflow
before the user kernel finishes in a few cases, GMODx can
still detect overflow for those cases after the user kernel exits.
In particular, when the user kernel finishes, the overflowed
buffer has been freed by a user thread using freeN. How-
ever, it still exists in the global memory of GPU, because of
our design of the delayed free. The guard thread can still
detect the overflow even after the user kernel finishes.

Performance Impact on User Kernel. We study the impact of
the number of guard threads on user kernel performance.
Figs. 12a, 12b, and 12c shows the results with different num-
ber of guard threads and user threads. Table 2 reports the
average performance improvement for variouse number of
guard threads (32, 64, 96, and 128), based on Figs. 12a, 12b,
and 12c.

The results show that among 60 cases shown in Figs. 12a,
12b, and 12c¢, 59 (except random-graph with 20K user
threads and 128 guard threads) have performance improve-
ment, due to the asynchronous design of £reeN and ignor-
able performance overhead of GMODx. We also notice that
with more guard threads, the performance benefit becomes
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Fig. 12. Performance of three benchmarks with GMODXx. The numbers in parenthesis indicate the number of guard threads.

smaller. In summary, with 32 guard threads, the improve-
ment is 30 percent on average (up to 48 percent) in all cases.
Based on the above study on the detection latency and user ker-
nel performance, we empirically use 32 threads as the number of
guard threads for GMODx, because 32 guard threads bring
low detection latency and small performance impact on
user kernel performance. We do not use less than 32 guard
threads, due to the warp-based scheduling nature on GPU.

8.4 Overhead of the Customized malloc

Different from typical usage scenarios where mallocN and
freeN come in pairs, in this experiment, we unveil the
overhead of mallocN by hiding the influence of freeN. We
separate the performance impact of mallocN from that of
freeN, because freeN can bring performance benefit while
mallocN cannot.

Figs. 13a, 13b, and 13c show the results. The results
show that the average overhead of our mallocN is about
10.9 percent (random-graph), 6.2 percent (add-string), and
5.1 percent (grid-point). In general, the customized malloc
results in overhead less than 11 percent. This overhead is rela-
tively small. This demonstrates the effectiveness of our high
performance design. More importantly, the overhead of the
customized malloc can be easily hidden by the performance
benefit of the customized free, as shown in Figs. 12a, 12b,
and 12c.

8.5 Performance of Coarse-Grained Memory
Detection

Detection Latency. To study the detection latency, we use five
benchmarks. Table 3 shows the detection latency that is the
average execution time of GMODXx scanning the whole list
structure. Table 3 shows that the detection latencies of all
cases are shorter than 0.1us, which is far less than the execu-
tion time of user kernels. It demonstrates that GMODx can
promptly detect buffer overflows from the CPU side.

TABLE 2
The Average Performance Improvement for Three
Benchmarks With GMODx
32 64 96 128
grid-point 43.8% 37.3 % 31.7% 29.2%
add-string 17.8% 17.8% 11.3% 15.6%
random-graph 30.6% 22% 14% 5.4%

This table is based on Figs. 12a, 12b, and 12c. The first row is the number of
guard threads. A positive percentile represents performance improvement.

Performance Impact on User Kernel. As for the five normal
benchmarks (Fig. 14) that cover a wide range of domains, the
overhead imposed by GMODx is 4.2 percent (up to 9.7 per-
cent) on average. Different from the fine-grained memory
detection, the coarse-grained memory detection has perfor-
mance loss, because cudaFree is executed on CPU and the
design of delayed memory deallocation does not work in this
situation. The overhead imposed on bfs is relatively high due
to its significantly heavy memory allocations and accesses.
The unified memory must guarantee data consistency
between the CPU and GPU, which introduces extra overhead
when executing write operations. Therefore, a large amount
of write operations in bfs increase the overhead.

Performance of cudaMallocPitch and cudaMallocHost.
In this section, we study the detector’s performance when using
cudaMallocPitch and cudaMallocHost. Fig. 15 presents
the performance of GMODX, which is normalized by the execu-
tion time that is obtained when the detection is disabled. In gen-
eral, we can see the overhead imposed by GMODx is negligible
for both cudaMallocPitch and cudaMallocHost except
for the benchmark bil (9.3 percent). The overhead imposed on
bil is relatively high, because it involves heavy memory alloca-
tions and accesses like the benchmark bfs.

8.6 Page Faults

As shown in Section 6.3, several approaches are used to
improve the performance of unified memory. To illustrate
the effectiveness of these optimizations, we compare the
performance under two scenarios, one with the optimiza-
tions enabled and one with the optimizations disabled.

Table 4 shows the results. H to D indicates the number of
memory transfers from the host to device. GPU PG Group
(GPU page fault group) and CPU PG (CPU page faults) rep-
resent the density of memory swap that happens when the
CPU and GPU access a memory page that is not currently
mapped in their own memory. The number of page fault
groups is not the total number of page faults on GPU. On
the CUDA platform, page faults are written to a special
buffer in system memory and multiple faults forming a
group are processed simultaneously by the unified memory
driver. Therefore, using GPU page fault groups is more rep-
resentative than GPU page faults.

From Table 4, we can observe obvious reduction of host-to-
device transfers and CPU page faults (better performance). The
average number of host-to-device (not including bfs) transfers
drops from 198.2 to 13.2, and the average number of CPU page
faults (besides bfs) decreases from 157.8 to 21.8. In addition, the
number of GPU page fault groups is eliminated when our opti-
mization is applied. For bfs, a large amount of memory
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Fig. 13. Performance impact of mallocN.

transfers and memory swaps make the program crash when
the optimizations are disabled, and it fails to output any
results. In contrast, bfs achieves good performance with the
optimizations. This indicates that the optimizations can
effectively reduce the overhead introduced by the detector.

8.7 Performance of Co-Running Benchmarks

To study the performance of GMODx with co-running ker-
nels, we choose two benchmarks from the eight benchmarks
to co-run, resulting in 28 combinations as shown in Fig. 16.

Fine-Grained Memory Detection. The benchmarks gp-ads,
gp-rg, and ads-rg are used to demonstrate the perfor-
mance of fine-grained memory detection. GMODx does not
cause performance degradation because of the asynchro-
nous design of freeN that delegates memory deallocation to
the guard kernel.

Coarse-Grained Memory Detection. There are ten cases in
total that demonstrate the performance of coarse-grained
memory detection in GMODXx. All benchmarks achieve low
overhead (less than 4 percent), except for the two cases

TABLE 3
The First Three Rows Show the Execution Time With or Without
Detectors (GMODXx and cuda-memcheck) Enabled

Benchmark bfs mri-fhd pns mri-q fft
App (ms) 14.5 23.4 224.1 2.6 0.106
App + GMODx (ms) 15.9 23.5 227 2.7 0.113
App + cuda-mem (ms) 184.1 33.1 5975 74 4.1

DL (us) 0.08 0.04 0.04 0.022 0.013
MC (KB) 71,936 5,292 720,000 5,267 6,368
MC + GMODx (KB) 72,097 5,382 720,035 5,332 6,496

The fourth row (DL) shows the detection latency. The rows 5 and 6 show the
original memory cost and the memory cost with our detector.
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Fig. 14. Performance evaluation of GMODx with five benchmarks. The
performance is normalized by the execution time of applications without
GMODx.
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where bfs is paired with mri-q and fft, which incurs over-
head less than 10 percent.

Concurrent Coarse-Grained and Fine-Grained Memory Detec-
tion. GMODx can concurrently detect overflows on both
coarse-grained and fine-grained memory in 18 cases. In gen-
eral, GMODx does not cause performance loss except the
case of gp-pns (1.4 percent loss). For the benchmark gp-
pns, pns dominate the whole execution of gp-pns. As a
result, the performance degradation from coarse-grained
memory detection overweighs the performance improve-
ment of fine-grained memory detection.

8.8 Performance of GMODXx on TensorFlow

To show the performance of GMODx on a real workload, we
deploy GMODx with TensorFlow to train four typical models.
As shown in Fig. 17, GMODx causes 0.8 percent overhead on
average (up to 1.8 percent). GMODx achieves such high
performance because training models with TensorFlow is
compute-intensive and GMODXx has negligible cost with such
workloads. In addition, GMODx does not compete against
the model-training tasks for GPU resource when detecting
overflow for the coarse-grained memory, which is beneficial
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N
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Fig. 15. Performance evaluation of GMODx with five benchmarks which
allocate memory using cudaMallocPitch and cudaMallocHost.
The performance is the normalized execution time.

TABLE 4
H to D Means the Number of Memory Transfers From Host
Memory to Device Memory, GPU GP Group is the Number of
GPU Page Fault Groups, and CPU PG is the Number
of CPU Page Faults

Benchmark  bfs mri-fhd pns mri-q fft

HtoD original - 2446 2113 151.6 1854
optimization 20 16 4 13 20

GPU PG Group original - 133.7 882 827 161.6
optimization 0 0 0 0 0

CPU PG original - 192.1 201  103.9 1343

optimization 252  29.7 6 19 32.8
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Fig. 16. Performance evaluation of GMODXx with co-running benchmarks. The performance is normalized by the execution time that is measured with
GMODx disabled. Benchmarks gp-ads, gp-rg, and ads-rg show the performance of fine-grained memory detection. From benchmark bf s-mri-
fhd tomri-g-£f£ft, we evaluate the performance of coarse-grained memory detection. From benchmark gp-bfs to rg-fft, we evaluate the con-

current detection on both coarse-grained and fine-grained.

to the overall performance. Note that GMODx will not
degrade the target quality (such as accuracy) because it does
not change the behaviors of training and inference (such as
algorithms) for TensorFlow and corresponding models.

8.9 Effectiveness

We evaluate the effectiveness of GMODx in detecting buffer
overflow. We conduct eight experiments. The first three
experiments are also used in the existing studies [16], [17] to
demonstrate the existence of GPU buffer overflow on fine-
grained memory allocation, and the other five benchmarks
are used for coarse-grained memory allocation.

We use GMODXx to detect buffer overflow in these bench-
marks. In all experiments, once GMODXx finds an overflow,
it stops the execution of user kernels and outputs overflow
information such as the user address where overflow hap-
pens. Table 5 shows the results, and the kernel time is the
execution time of the user kernel. In all cases, GMODx suc-
cessfully detects overflow and the detection latency is much
shorter than the kernel execution time.

8.10 Comparison With Existing Work

cuda-memcheck. To show the performance benefit of GMODx,
we compare its performance with cuda-memcheck. We
select cuda-memcheck instead of clARMOR, because clAR-
MOR is designed for OpenCL, but our detector and cuda-
memcheck both target the CUDA framework. Fig. 18 shows
the normalized execution time of cuda-memcheck. In gen-
eral, cuda-memcheck incurs significant overhead (at least 10
percent and up to 65.8x), which is much larger than GMODx.
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Fig. 17. Performance evaluation of GMODx when training four models
with the TensorFlow framework. The performance is the normalized exe-
cution time.

GMOD. We compare the performance of GMODx with
our previous work GMOD, to illustrate how differently the
coarse-grained memory detection behaves on GPU and
CPU. For the benchmarks bfs, mri-fthd, pns, mri-q, and fft,
GMOD causes 7.7, 2, 4.5, 6.1 and 6.7 percent performance
degradation respectively. In general, GMODXx has better per-
formance than GMOD in all benchmarks except bfs. The
benchmark bfs has a worse performance in GMODx because
its significantly heavy memory accesses introduces extra
overhead in the unified memory. In addition, GMODx
achieves higher transparency because it requires no modifi-
cations to user source code.

8.11 Memory Cost

For each user buffer, the fine-grained memory detection
needs 24 bytes for storing canaries and 9 bytes for storing
buffer information in the byte array. This is a rather small
memory cost. Since there is no canary-based overflow
detector for dynamically allocated buffers on GPU, we
compare GMODx with a canary-based overflow detector
on CPU [51] in terms of memory cost. This detector on
CPU is a state-of-the-art overflow detector on CPU. This
detector on CPU introduces 24 bytes for canaries and 16
bytes for storing address, which consumes larger memory
than GMODx. Table 3 show the extra memory consump-
tion for detecting coarse-grained memory and lists the
absolute amount of memory space that GMODx needs.
The results reveal that the memory consumption is less
than 2 percent, and the absolute amount of memory space

TABLE 5
Using Eight Buffer Overflow Benchmarks to Evaluate
the Effectiveness of GMODXx

Kernel time Detection latency Detected?

Single kernel 0.947 ms 0.0145 ms yes
Sequential kernels 1.273 ms 0.0098 ms yes
Concurrent kernels 10.818 ms 0.0121 ms yes
Single kernel 0.9185 ms 0.021 us yes
Sequential kernels 1.223 ms 0.023 us yes
Concurrent kernels (stream) ~ 10.95 ms 0.027 us yes
Concurrent kernels (thread)  7.316 ms 0.0245 us yes
Concurrent kernels (process)  9.481 ms 0.031 us yes

The first three benchmarks use fine-grained memory allocation and the other
five use coarse-grained memory allocation.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on January 10,2021 at 06:44:33 UTC from IEEE Xplore. Restrictions apply.



DI ET AL.: EFFICIENT BUFFER OVERFLOW DETECTION ON GPU

o
g 70 _I T T T T T T T T T T T T T T 65?8)( i
560 56.2x[ 54 1
% 50 L 50.2x
£40 34.7x 37.7x
330 26.7x 28.7x
N L
75 20 12.7x 93x
S 10 B ] 0 2.8x 1 4x 38X |1 3.7x [ 3.2x
Z 0!l= rent
35 ocd o0 gf 1B 8O o0 B QS 0 B D et - B0 D A6 ek
207 o RO BAANY N ORI N
9 R et o ‘g{sﬁg\\%@»@*

Fig. 18. Performance evaluation of cuda-memcheck. Performance is
normalized by the execution time when overflow detection is disabled.

is less than 161 KB, which means the memory consumption
for the coarse-grained detection is negligible.

9 RELATED WORK

Buffer Overflow Detection on CPU. Many static analysis
tools [33], [34] use bounds checking to detect buffer over-
flows by analyzing source code statically. This approach suf-
fers from high false positive or false negative rate. Canary is
first proposed in Electric Fence [21], which tackles stack
smashing attacks by placing a canary word before return
address on stack. Address Space Layout Randomization
(ASLR) [36] generates different addresses for stack and heap
variables for different executions, such that buffer overflow
attacks cannot be achieved reliably. Cruiser [51] is a concur-
rent heap buffer overflow detector on CPU, and it is similar
to GMODx, but we focus on GPU.

Security Issues on GPU. The study in [53] shows that
adversaries can retrieve other processes’s data stored in
GPU memory by analyzing the memory dump of GPU devi-
ces. Maurice et al. [54] highlight possible information leak-
age of GPUs in virtualized and cloud environments. In [55],
Pietro et al. present a detailed analysis of information leak-
age in CUDA. Our paper is different from these work by
focusing on defeating buffer overflow and double free with
low performance overhead.

Multi-Kernel Concurrent Execution on GPUs. In order to
improve the utilization of GPUs, researchers propose solu-
tions to run multiple kernels from different users concur-
rently on GPUs. In [56], Ravi et al. present a framework to
enable applications executing within virtual machines to
transparently share one or more GPUs. Pai et al. [57] pro-
pose transformations to convert CUDA kernels into elastic
kernels in order to gain fine-grained control over resource
usage. Current endeavors on multi-kernel execution focus
on improving resource utilization, security and reliability
issues are not concerned. GMODx complements these work
by considering GPU security.

GPU Memory Overflow. Miele [16] presents a preliminary
study of buffer overflow vulnerabilities in CUDA. An
attacker can overrun a buffer to corrupt sensitive data or
steer the execution flow by overwriting function pointers,
e.g., manipulating the virtual table of a C++ object. In [17],
Di ef al. demonstrate the existence of stack and heap over-
flows, although stack overflows have limited impact on
security. cuda-memcheck is a tool for checking CUDA
memory errors [23], and it can detect heap overflows
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mentioned above. But its runtime overhead makes it
impractical to be deployed in production, and it was
reported that the overhead incurred by cuda-memcheck is
roughly 120 percent [26].

clARMOR [24] is another GPU buffer overflow detector
using a canary-based design. It offers runtime protection
with reasonable overhead. Although both cJARMOR and
our detector use the canary-based design, they are funda-
mentally different. In particular, clARMOR performs detec-
tion only after the kernel has completed. This means that
clARMOR cannot detect buffer overflow for fine-grained
memory allocation (i.e., malloc). GMODx can detect buffer
overflow during kernel execution, for both fine-grained and
coarse-grained memory allocation. In addition, detecting
buffer overflow during the kernel execution is challenging,
because we must avoid the impact of the detector on the
performance of user kernels. GMODXx introduces a series of
techniques to alleviate performance overhead.

10 CoONCLUSION AND FUTURE WORK

In this paper, we present the design and implementation of a
dynamic GPU memory overflow detector GMODx which per-
forms always-on monitoring on buffers that are allocated
using both fine-grained and coarse-grained memory APIs.
GMODx can effectively identify buffer overflow with ignor-
able performance overhead. In the future, It is interesting and
challenging to embed our detector into GPU co-run frame-
works, which consider combining multiple small tasks to
both improve resource utilization for GPUs.
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